求由方程y=cot(x+y)所确定的隐函数y=y(x)的二阶导数
2个回答
展开全部
y=cot(x+y)=cos(x+y)/sin(x+y)
y'=[-sin(x+y)·(1+y')·sin(x+y)-cos(x+y)·(1+y')·cos(x+y)]/sin²(x+y)
=-(1+y')/sin²(x+y)
y'[sin²(x+y)+1]=-1→y'=-1/[sin²(x+y)+1]
y''=[sin²(x+y)+1]'/[sin²(x+y)+1]²
=[sin2(x+y)·(1+y')]/[sin²(x+y)+1]²
=[sin2(x+y)·sin²(x+y)/[sin²(x+y)+1])]/[sin²(x+y)+1]²
=[sin2(x+y)·sin²(x+y)]/[sin²(x+y)+1]³
y'=[-sin(x+y)·(1+y')·sin(x+y)-cos(x+y)·(1+y')·cos(x+y)]/sin²(x+y)
=-(1+y')/sin²(x+y)
y'[sin²(x+y)+1]=-1→y'=-1/[sin²(x+y)+1]
y''=[sin²(x+y)+1]'/[sin²(x+y)+1]²
=[sin2(x+y)·(1+y')]/[sin²(x+y)+1]²
=[sin2(x+y)·sin²(x+y)/[sin²(x+y)+1])]/[sin²(x+y)+1]²
=[sin2(x+y)·sin²(x+y)]/[sin²(x+y)+1]³
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询