如图所示,这题怎么解?谢谢
3个回答
展开全部
第一个因式分子分母均进行因式分解
原式=(x+1)(x-1)/(x-1)²×1/(x+1)-1/x
=1/(X-1)-1/x
=1/(2-1)-1/2
=1-1/2
=1/2
原式=(x+1)(x-1)/(x-1)²×1/(x+1)-1/x
=1/(X-1)-1/x
=1/(2-1)-1/2
=1-1/2
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x=2
[(x^2-1)/(x^2-2x+1) ] . [ 1/(x+1)] - 1/x
=[(x-1)(x+1)/(x-1)^2 ] . [ 1/(x+1)] - 1/x
=1/(x-1) -1/x
=1/[x(x-1)]
=1/[2(2-1)]
=1/2
[(x^2-1)/(x^2-2x+1) ] . [ 1/(x+1)] - 1/x
=[(x-1)(x+1)/(x-1)^2 ] . [ 1/(x+1)] - 1/x
=1/(x-1) -1/x
=1/[x(x-1)]
=1/[2(2-1)]
=1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询