a+b>0,证明a³+b³≥a²b+ab² 我来答 1个回答 #合辑# 面试问优缺点怎么回答最加分? 侨秀芳鲜媪 2020-02-08 · TA获得超过3.7万个赞 知道大有可为答主 回答量:1.2万 采纳率:26% 帮助的人:1086万 我也去答题访问个人页 关注 展开全部 a³+b³-a²b-ab²=a²(a-b)+b²(b-a)=(a-b)(a²-b²)=(a-b)²(a+b),等式转换成这样,因为a+b>0,(a-b)²≥0,所以(a-b)²(a+b)≥0,所以a³+b³-a²b-ab²≥0,所以a³+b³≥a²b+ab²,证明完毕 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: