如图,边长是2的正方形ABCD的各个顶点都在圆O上,AC是对角线,P为边CD的中点,延长AP交圆于点E。
(1)∠E=___。(2)写出图中现有的一对不全等的三角形,并说明理由。(3)求弦DE的长。DE是连结的。应该是不全等的相似三角形。...
(1)∠E=___。
(2)写出图中现有的一对不全等的三角形,并说明理由。
(3)求弦DE的长。
DE是连结的。
应该是不全等的相似三角形。 展开
(2)写出图中现有的一对不全等的三角形,并说明理由。
(3)求弦DE的长。
DE是连结的。
应该是不全等的相似三角形。 展开
展开全部
)△ACP∽△DEP,(4分)
理由:∵∠AED=∠ACD,∠APC=∠DPE,
∴△ACP∽△DEP.(6分)
(3)方法一:
∵△ACP∽△DEP,
∴APDP=
ACDE.(7分)
∵AP=AD2+DP2=
5,AC=AD2+DC2=2
2,(9分)
∴DE=2
105.(10分)
方法二:
如图2,过点D作DF⊥AE于点F,
在Rt△ADP中,AP=AD2+DP2=
5.(7分)
又∵S△ADP=12AD•DP=12AP•DF,(8分)
∴DF=2
55.(9分)
∴DE=2DF=2
105.(10分)
理由:∵∠AED=∠ACD,∠APC=∠DPE,
∴△ACP∽△DEP.(6分)
(3)方法一:
∵△ACP∽△DEP,
∴APDP=
ACDE.(7分)
∵AP=AD2+DP2=
5,AC=AD2+DC2=2
2,(9分)
∴DE=2
105.(10分)
方法二:
如图2,过点D作DF⊥AE于点F,
在Rt△ADP中,AP=AD2+DP2=
5.(7分)
又∵S△ADP=12AD•DP=12AP•DF,(8分)
∴DF=2
55.(9分)
∴DE=2DF=2
105.(10分)
展开全部
解析:
(1)
圆周角相等
∴∠AED=∠ACD=45°
(2)
不全等的三角形很多,不全等的相似三角形有这个:
△APC和△DPE相似,但是不全等,
证明:
∠PAC=∠PDE,∠PCA=∠PED
∴△PAC∽△PDE,
∵AC是直径,DE是不过圆心的弦
∴AC>DE,即两个相似三角形的对应边不相等,
∴△PAC和△PDE不全等
(3)
根据第二问得到的△PAC∽△PDE,可以得到比例关系式
DE/AC=DP/AP
∵AC=2√2,DP=(1/2)CD=1,AP=√(AD²+DP²)=√5
∴DE=AC*DP/AP=2√2/√5=(2/5)√10
谢谢
(1)
圆周角相等
∴∠AED=∠ACD=45°
(2)
不全等的三角形很多,不全等的相似三角形有这个:
△APC和△DPE相似,但是不全等,
证明:
∠PAC=∠PDE,∠PCA=∠PED
∴△PAC∽△PDE,
∵AC是直径,DE是不过圆心的弦
∴AC>DE,即两个相似三角形的对应边不相等,
∴△PAC和△PDE不全等
(3)
根据第二问得到的△PAC∽△PDE,可以得到比例关系式
DE/AC=DP/AP
∵AC=2√2,DP=(1/2)CD=1,AP=√(AD²+DP²)=√5
∴DE=AC*DP/AP=2√2/√5=(2/5)√10
谢谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:(1)由圆内接正方形ABCD中,AC是对角线,知∠E=∠ACD=45°.
(2)由∠AED=∠ACD,∠APC=∠DPE,知△ACP∽△DEP.
(3)由△ACP∽△DEP,知
APDP=
ACDE,由边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,AP=
4+1=
5,AC=
4+4=2
2,由此能求出DE.解答:解:(1)∵圆内接正方形ABCD中,AC是对角线,
∴∠ACD=45°,
∴∠E=∠ACD=45°,
故答案为:45°.
(2)△ACP∽△DEP,
理由:∵∠AED=∠ACD,
∠APC=∠DPE,
∴△ACP∽△DEP.
(3)∵△ACP∽△DEP,
∴APDP=
ACDE,
∵边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,
∴AP=
4+1=
5,
AC=
4+4=2
2,
∴DE=AC•DPAP=2
2×15=2
105.点评:本题考查与圆有关的比例线段的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
(2)由∠AED=∠ACD,∠APC=∠DPE,知△ACP∽△DEP.
(3)由△ACP∽△DEP,知
APDP=
ACDE,由边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,AP=
4+1=
5,AC=
4+4=2
2,由此能求出DE.解答:解:(1)∵圆内接正方形ABCD中,AC是对角线,
∴∠ACD=45°,
∴∠E=∠ACD=45°,
故答案为:45°.
(2)△ACP∽△DEP,
理由:∵∠AED=∠ACD,
∠APC=∠DPE,
∴△ACP∽△DEP.
(3)∵△ACP∽△DEP,
∴APDP=
ACDE,
∵边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,
∴AP=
4+1=
5,
AC=
4+4=2
2,
∴DE=AC•DPAP=2
2×15=2
105.点评:本题考查与圆有关的比例线段的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询