如图bd是菱形abcd的对角线 角abc等于60度 ab等于2厘米 点p,从a出发,以两厘米

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀... 如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以 cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts. (1)当P异于A.C时,请说明PQ∥BC; (2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点? 展开
 我来答
会哭的礼物17
2020-03-14 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6335
采纳率:100%
帮助的人:35.8万
展开全部
(1)∵四边形ABCD是菱形,且菱形ABCD的边长为2, ∴AB=BC=2,∠BAC= ∠DAB。 又∵∠DAB=60°,∴∠BAC=∠BCA=30°。 如图1,连接BD交AC于O。 ∵四边形ABCD是菱形, ∴AC⊥BD,OA= AC。 ∴OB= AB=1。∴OA= ,AC=2OA=2 。 运动ts后,AP= t,AO=t,∴ 。 又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB. ∴PQ∥BC. (2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC。 在Rt△CPM中,∵∠PCM=30°,∴PM= 。 由PM=PQ=AQ=t,即 =t,解得t= , 此时⊙P与边BC有一个公共点。 如图3,⊙P过点B,此时PQ=PB, ∵∠PQB=∠PAQ+∠APQ=60° ∴△PQB为等边三角形。∴QB=PQ=AQ=t。∴t=1。 ∴当 时,⊙P与边BC有2个公共点。 如图4, ⊙P过点C,此时PC=PQ,即 =t ∴t= 。 ∴当1≤t≤ 时,⊙P与边BC有一个公共点。 当点P运动到点C,即t=2时,Q、B重合,⊙P过点B, 此时,⊙P与边BC有一个公共点。 综上所述,当t= 或1≤t≤ 或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当 时,⊙P与边BC有2个公共点。 直线与圆的位置关系,菱形的性质,含30°角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。 【分析】(1)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论。 (2)分⊙P与BC切于点M,⊙P过点B,⊙P过点C和点P运动到点C四各情况讨论即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式