求一题关于高数偏导数的解答设x=x(y,z),y=y(x,z),z=(x,y)都...

求一题关于高数偏导数的解答设x=x(y,z),y=y(x,z),z=(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导得函数,证明dx/dy*dy/dz*dz/... 求一题关于高数偏导数的解答 设x=x(y,z),y=y(x,z),z=(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导得函数,证明dx/dy*dy/dz*dz/dx=-1 由连续偏导函数x=x(y,z)得 ∂x/∂y=-Fy/Fx 同理:∂y/∂z=-Fz/Fy ∂z/∂x=-Fx/Fz 所以(∂x/∂y)×(∂y/∂z)×(∂z/∂x)=-1 提问: 我想知道“∂x/∂y=-Fy/Fx”这个的出处,如果是固定的公式请告诉我公式的具体内容,不用证明.(∂x/∂y)×(∂y/∂z)×(∂z/∂x)=-1这个约分不应该是1吗,为什么会是-1.刚开始学高数,不懂这个 展开
 我来答
邗誉是宝
2019-05-24 · TA获得超过3694个赞
知道大有可为答主
回答量:3139
采纳率:27%
帮助的人:189万
展开全部
“∂x/∂y=-Fy/Fx”这是隐函数求导公式,在高数下册多元函数微分那一章.一般来说∂x/∂y是不能像一元函数dx/dy那样看出∂x和∂y相除的,因此一般不能约分,(∂x/∂y)×(∂y/∂z)×(∂z/∂x)=-1而不是1正说明不能简单约分的.如果多说一点,造成不能约分的原因是它们固定的量不一样,如果对深刻原因不太感兴趣的话只记住结论即可.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式