今日头条系统推荐的原理是什么?
2个回答
展开全部
机器通过计算得出的用户阅读兴趣
用户阅读过的文章分类和关键词;用户聚类-相似类型用户还喜欢阅读的其他文章类型;用户在今日头条客户端主动标记「不感兴趣」的实体词或文章类型。
根据以上数据,系统对用户的阅读兴趣就能有个基本的判断。一般来讲,用户使用产品时间越长,系统积累的阅读数据越多,对其兴趣的判断也就越准确。使用产品的用户越多,系统对用户聚类的判断也越准确。
文章的首次推荐,如果点击率低,系统认为文章不适合推荐给更多的用户,会减少二次推荐的推荐量;如果点击率高,系统则认为文章受用户喜欢,将进一步增加推荐量。以此类推,文章新一次的推荐量都以上一次推荐的点击率为依据。此外,文章过了时效期后,推荐量将明显衰减,时效期节点通常为24小时、72小时和一周。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询