已知函数y=f(x)在定义域[-1,1]上是奇函数,也是减函数
已知函数y=f(x)在定义域[-1,1]上是奇函数,也是减函数1证明对任意x1,x2属于[-1,1]与f(x1)+f(x2)/x1+x2<=02若f(1-a)+f(1-a...
已知函数y=f(x)在定义域[-1,1]上是奇函数,也是减函数
1证明对任意x1,x2属于[-1,1]与f(x1)+f(x2)/x1+x2<=0
2若f(1-a)+f(1-a^2)<0,求实数a的取值范围 展开
1证明对任意x1,x2属于[-1,1]与f(x1)+f(x2)/x1+x2<=0
2若f(1-a)+f(1-a^2)<0,求实数a的取值范围 展开
展开全部
令-1<=x1<x2<=1
则x1-x2<0
f(x)是减函数则
f(x1)-f(x2)>0
所以[f(x1)-f(x2)]/(x1-x2)<0
即[f(x1)+f(-x2)]/(x1-x2)<0
也即[f(x1)+f(x2)]/(x1x2)<0 (x2代替-x2)
f(1-a)+f(1-a^2)>0
f(1-a)>-f(1-a^2)
f(x)是奇函数所以
f(1-a)>f(a^2-1)
y=f(x)定义在(-1,1)上所以
-1<1-a<1
-1<a^2-1<1
函数为减函数所以
1-a<a^2-1
解得1<a<√2
则x1-x2<0
f(x)是减函数则
f(x1)-f(x2)>0
所以[f(x1)-f(x2)]/(x1-x2)<0
即[f(x1)+f(-x2)]/(x1-x2)<0
也即[f(x1)+f(x2)]/(x1x2)<0 (x2代替-x2)
f(1-a)+f(1-a^2)>0
f(1-a)>-f(1-a^2)
f(x)是奇函数所以
f(1-a)>f(a^2-1)
y=f(x)定义在(-1,1)上所以
-1<1-a<1
-1<a^2-1<1
函数为减函数所以
1-a<a^2-1
解得1<a<√2
展开全部
1、证明:
x2∈[-1,1],则-x2∈[-1,1]
f(x)是奇函数,则f(x2)=-f(-x2)
不放设x1> -x2,则
x1-(-x2)>0,即x1+x2>0
f(x)是减函数,则
f(x1)-f(-x2)<0
即f(x1)+f(x2)<0
∴[f(x1)+f(x2)]/(x1+x2)<0
当等号成立时,f(x1)+f(x2)=0,且x1+x2≠0
f(x1)=-f(x2)
f(x1)=f(-x2)
由于函数是单调的,所以x1=-x2
此时x1+x2=0,矛盾
所以等号不可能成立
也就是说:
对任意x1,x2∈[-1,1],有
成立,
可是这时也可以说证明:
x2∈[-1,1],则-x2∈[-1,1]
f(x)是奇函数,则f(x2)=-f(-x2)
不放设x1> -x2,则
x1-(-x2)>0,即x1+x2>0
f(x)是减函数,则
f(x1)-f(-x2)<0
即f(x1)+f(x2)<0
∴[f(x1)+f(x2)]/(x1+x2)<0
当等号成立时,f(x1)+f(x2)=0,且x1+x2≠0
f(x1)=-f(x2)
f(x1)=f(-x2)
由于函数是单调的,所以x1=-x2
此时x1+x2=0,矛盾
所以等号不可能成立
也就是说:
对任意x1,x2∈[-1,1],有
[f(x1)+f(x2)]/(x1+x2)≤0恒成立
得证
2、解:
f(1-a)+f(1-a^2)>0
f(1-a)>-f(1-a^2)
f(x)是奇函数所以
f(1-a)>f(a^2-1)
y=f(x)定义在(-1,1)上所以
-1<1-a<1
-1<a^2-1<1
函数为减函数所以
1-a<a^2-1
解得1<a<√2
x2∈[-1,1],则-x2∈[-1,1]
f(x)是奇函数,则f(x2)=-f(-x2)
不放设x1> -x2,则
x1-(-x2)>0,即x1+x2>0
f(x)是减函数,则
f(x1)-f(-x2)<0
即f(x1)+f(x2)<0
∴[f(x1)+f(x2)]/(x1+x2)<0
当等号成立时,f(x1)+f(x2)=0,且x1+x2≠0
f(x1)=-f(x2)
f(x1)=f(-x2)
由于函数是单调的,所以x1=-x2
此时x1+x2=0,矛盾
所以等号不可能成立
也就是说:
对任意x1,x2∈[-1,1],有
成立,
可是这时也可以说证明:
x2∈[-1,1],则-x2∈[-1,1]
f(x)是奇函数,则f(x2)=-f(-x2)
不放设x1> -x2,则
x1-(-x2)>0,即x1+x2>0
f(x)是减函数,则
f(x1)-f(-x2)<0
即f(x1)+f(x2)<0
∴[f(x1)+f(x2)]/(x1+x2)<0
当等号成立时,f(x1)+f(x2)=0,且x1+x2≠0
f(x1)=-f(x2)
f(x1)=f(-x2)
由于函数是单调的,所以x1=-x2
此时x1+x2=0,矛盾
所以等号不可能成立
也就是说:
对任意x1,x2∈[-1,1],有
[f(x1)+f(x2)]/(x1+x2)≤0恒成立
得证
2、解:
f(1-a)+f(1-a^2)>0
f(1-a)>-f(1-a^2)
f(x)是奇函数所以
f(1-a)>f(a^2-1)
y=f(x)定义在(-1,1)上所以
-1<1-a<1
-1<a^2-1<1
函数为减函数所以
1-a<a^2-1
解得1<a<√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询