基本不等式如何判断最大小值 积定和最小,

 我来答
焉思咎芷若
2020-08-02 · TA获得超过1276个赞
知道小有建树答主
回答量:1704
采纳率:100%
帮助的人:9.7万
展开全部
基本不等式
a,b属于正数则a+b≥2√ab,
下面解释积定和最小,a+b≥2√ab,注意ab为定值,即2√ab为定值
分析当a=b时,不等式a+b≥2√ab,取等号,即a+b=2√ab,即a与b的和为2√ab
当a≠b时,不等式a+b≥2√ab,取>号,即a+b>2√ab,即a与b的和>2√ab
即当a=b时,a与b的和为2√ab,即a+b取得最小值2√ab

下面解释和定积最大
由a+b≥2√ab得ab≤(a+b)²/4
分析当a=b时,不等式ab≤(a+b)²/4,取等号,即ab=(a+b)²/4,即a与b的积为(a+b)²/4
当a≠b时,不等式ab≤(a+b)²/4,取>号,即ab<(a+b)²/4,即a与b的积<(a+b)²/4
即当a=b时,即a与b的积为(a+b)²/4,即ab的最大值为(a+b)²/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式