高一数学函数的基本性质
3个回答
展开全部
一、函数的概念
在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。
函数的概念和图象
重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。
二、函数关系的建立
“探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的一段描述。因此,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。
三、函数的运算
函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。
四、函数的基本性质
在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。
函数的概念和图象
重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。
二、函数关系的建立
“探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的一段描述。因此,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。
三、函数的运算
函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。
四、函数的基本性质
在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询