f(a)=f(b)=0,且f'+(a)>0.证明存在

设f∈C[a,b],f(a)=f(b)=0,且f'(a)f'(b)>0,证明:存在x属于(a,b),使f(x)=0是否需要f在(a,b)内可导这个条件呀?这样直观地说f(... 设f∈C[a,b],f(a)=f(b)=0,且f '(a)f '(b)>0,证明:存在x属于(a,b),使f(x)=0
是否需要f在(a,b)内可导这个条件呀?
这样直观地说f(x1)>0貌似还不够严谨,需要更严格的证明。。而且f '(a)和f '(b)是同号的。。
展开
 我来答
茹翊神谕者

2022-01-05 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1629万
展开全部

简单分析一下即可,答案如图所示

戴澜高阑
2020-01-11 · TA获得超过1178个赞
知道小有建树答主
回答量:1836
采纳率:100%
帮助的人:8.7万
展开全部
不需要
不妨设f'(a)>0,f'(b)>0,
那么在(a,a+n)上存在x1,使得f(x1)>0,其中n为任意小的正实数
同理,在(b-n,b)上存在x2,使得f(x2)<0,又f在[a,b]上连续,所以在(x1,x2)上一定存在x,使得f(x)=0
刚才打错了,是同号
很严谨的,f'(a)=lim[f(x)-f(a)]/(x-a)>0,而且极限存在则左右极限都存在
右极限的情况下,(x-a)>0,f'+(a)>0,那么一定有f(x)>f(a)=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式