乘除法运算法则
乘除法运算法则
一、整数乘法法则:
1、从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
2、然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
二、小数乘法法则:
1、按整数乘法的法则算出积;
2、再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。 3)得数的小数部分末尾有0,一般要把0去掉,进行化简。
三、分数乘法法则:
把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,然后再约分。
四、整数的除法法则
1、从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2、除到被除数的哪一位,就在那一位上面写上商; 3)每次除后余下的数必须比除数小。
五、除数是整数的小数除法法则:
1、按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2、如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
六、除数是小数的小数除法法则:
计算除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的除法法则进行计算。
1、先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2、然后按照除数是整数的小数除法来除。
六、分数的除法法则:
1、用被除数的分子与除数的分母相乘作为分子;
2、用被除数的分母与除数的分子相乘作为分母。(即被除数不变,乘除数的倒数)
扩展资料:
乘法运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2、乘法结合律:(ab)c=a(bc) ,
3、乘法分配律:(a+b)c=ac+bc 。