线性代数用初等变换解方程题!求具体解答过程!1.(1)2.(1)?

 我来答
麻里麻里哄
2021-04-13 · TA获得超过269个赞
知道小有建树答主
回答量:216
采纳率:100%
帮助的人:21.1万
展开全部

解答过程如下:

1.(1)

2.(1)

初等变换解非线性齐次方程组可以大致分为三步。

第一步:写出增广矩阵。如第一题的第一小题中的B,即为增广矩阵。

第二步:对增广矩阵进行初等行变换。首先将增广矩阵化为阶梯形矩阵。判断出方程是否有解。判断是否有解的条件是系数矩阵的秩要等于增广矩阵的秩。阶梯形矩阵的特点是,任何一行的第一个非零元素所在的列中,这个非零元素下方元素皆为0。图中画了小阶梯的矩阵即为阶梯形矩阵。

第三步是如果第二步判断有解,则将阶梯形矩阵化为行简化矩阵,解出方程。行简化矩阵:每行的第一个非零元素为1,它所在列的元素皆为0。相当于化成单位矩阵。如最终结果所示。

用初等变换法解齐次线性方程组

第一步:写出系数矩阵。

第二步:对系数矩阵化简得到阶梯形矩阵。

第三步:根据化简得到的阶梯形矩阵写出新的方程组。这里因为化简之后秩为3,那么自由未知量只有一个x4,得到如图所示方程组。

第四步:写出一般解,即把x1,x2,x3用x4表示出来。然后取自由未知量x4=1则可得到基础解系

第五步:根据所得基础解系写出方程的全部解。

具体操作如图所示。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式