光量子计算机和超导量子计算机有什么区别?
区别如下:
光量子计算技术
是将光子当成量子比特。光子有三个性质可以构成量子状态:自旋、偏振(polarization)和路径(path)。路径是指光子经光子分离器(photon splitter)后因为量子机率的特性可能由不同方向行进,特别是在量子通讯和量子计算中的光源都是单光子。单一光子采取路径A就不会再走路径B,反之亦然。然而在未量测之前我们无法得知光子采取哪一条路径,这就是两种状态的叠加。
光量子技术具有量子比特相干时间长、操控简单、与光纤和集成光学技术相容,拓展性好。劣势就在于很难小型化,量子比特之间逻辑操作困难,无法进行编程。从这一点上来看,光量子技术难以发展为通用量子计算机。
超导量子计算技术
可以用超导体的电荷、相位和磁通量三种方式来形成量子比特,目前普遍用电荷(叫transmon)的方式,IBM与Google的53位比特量子计算机皆采取此种技术。而国内中科院、中科大、本源量子、浙江大学等在此技术上均有布局。
超导量子技术的优势在于量子比特可控性强、拓展性良好、可依托现有成熟的集成电路工艺。但劣势也很明显,为了保障退相干时间,超导量子比特必须在接近绝对零度的真空环境下运行。这不仅要求超导体系必须要有强大的低温制冷系统,还在一定程度上限制了量比特的拓展。
2024-10-17 广告