X∈【0,π/2】 函数y=sinx+cosx的最大值和最小值
展开全部
y=sinx+cosx
=√2(√2/2*sinx+√2/2*cosx)
=√2(sinxcosπ/4+cosxsinπ/4)
=√2sin(x+π/4)
x∈[0,π/2]
x+π/4∈[π/4,3π/4]
当x=π/4时,sin(x+π/4)=1
ymax=√2
当x=π/2时,sin(x+π/4)=√2/2
ymin=√2/2*√2=1
=√2(√2/2*sinx+√2/2*cosx)
=√2(sinxcosπ/4+cosxsinπ/4)
=√2sin(x+π/4)
x∈[0,π/2]
x+π/4∈[π/4,3π/4]
当x=π/4时,sin(x+π/4)=1
ymax=√2
当x=π/2时,sin(x+π/4)=√2/2
ymin=√2/2*√2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
y=sinx+cosx=√2sin(x+π/4)
x+π/4∈[π/4,3π/4]
则sin(x+π/4)∈[√2/2,1]
所以ymax=√2
ymin=1
y=sinx+cosx=√2sin(x+π/4)
x+π/4∈[π/4,3π/4]
则sin(x+π/4)∈[√2/2,1]
所以ymax=√2
ymin=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询