最先引入符号“∈”的数学家是谁,以及符号“∈”的原始意义是什么?
属于,数学符号为“∈”,表示元素和集合之间的关系。若a∈A,则a属于集合A,a是集合A中的元素。若a∉A,则a不属于集合A,a不是集合A中的元素。
一般地,指定的某些对象的全体称为集合,用大写字母A,B,C,D ...表示;集合中的每个对象叫做这个集合的元素,用小写字母a,b,c,d ...表示。
属于,数学符号为“∈”,表示元素和集合之间的关系。如果a是集合A的元素,就说a属于集合A,记作 a∈A ;如果a不是集合A中的元素,就说a不属于集合A,记作 a∉A。
数学符号的发展
十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。
德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。