鸽巢问题原理是什么?
一、第一抽屉原理
1、原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
2、原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
3、原理3:把无数还多件物体放入n个抽屉,则至少有一个抽屉里有无数个物体。
原理1 、2 、3都是第一抽屉原理的表述。
二、第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
例子
虽然鸽巢原理看起来很容易理解,但有时使用鸽巢原理会得到一些有趣的结论:
比如:北京至少有两个人头发数一样多。
证明:常人的头发数目在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果把每个鸽巢定义为“头发的数量”,便共有100万个鸽巢。打一个比方,一根头发的人就会被编排在一根头发属于的巢、两根就在两根头发属于的巢,如此类推。
鸽子则对应于人,那就变成了有大于100万只鸽子要进到100万个巢中(另一种说法是把多于100万个人编排到他们身上头发所属的鸽巢,比如有一个人有三根头发,他便会进了属于有三根头发的人的鸽巢)。
因为北京人口多于100万,如果受访的前100万人头发数目刚好不同,第100万零一个的北京市民就必定会进了一个已经有一人在内的鸽巢。因此,我们便可以得到“北京至少有两个人头发数一样多”的结论。
以上内容参考 百度百科-鸽巢原理
1、原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
2、原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
3、原理3:把无数还多件物体放入n个抽屉,则至少有一个抽屉里有无数个物体。
原理1 、2 、3都是第一抽屉原理的表述。
二、第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

例子
虽然鸽巢原理看起来很容易理解,但有时使用鸽巢原理会得到一些有趣的结论:
比如:北京至少有两个人头发数一样多。
证明:常人的头发数目在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果把每个鸽巢定义为“头发的数量”,便共有100万个鸽巢。打一个比方,一根头发的人就会被编排在一根头发属于的巢、两根就在两根头发属于的巢,如此类推。
鸽子则对应于人,那就变成了有大于100万只鸽子要进到100万个巢中(另一种说法是把多于100万个人编排到他们身上头发所属的鸽巢,比如有一个人有三根头发,他便会进了属于有三根头发的人的鸽巢)。
因为北京人口多于100万,如果受访的前100万人头发数目刚好不同,第100万零一个的北京市民就必定会进了一个已经有一人在内的鸽巢。因此,我们便可以得到“北京至少有两个人头发数一样多”的结论。
以上内容参考 百度百科-鸽巢原理
鸽巢问题又名抽屉原理,一种跟生活实际非常相关的数学