sinx是收敛函数还是发散函数?

 我来答
热梗之家哇哈哈
2021-10-30 · TA获得超过1.8万个赞
知道小有建树答主
回答量:276
采纳率:100%
帮助的人:12.8万
展开全部

是收敛的。

sinx展开后是函数项级数,准确的说是幂级数,只有常数项级数可以直接谈收敛或者发散。sinx展开成x的幂级数后它的收敛半径是+∞,所以sinx在整条数轴上都是收敛的。

可以把sinx展开成x的幂级数,这时把辩液唤x当作常数,发现这是交错级数,用绝对收敛埋漏的方法的话得到正项级数,这时用比值审敛法(达朗贝尔法)计算得到比值的极限为0,0<1,所以该级数是收敛的。

定义方式与数列收敛类似。柯西收敛准则关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存携凯在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。收敛的定义方式很好的体现了数学分析的精神实质。

相关概念

对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。

若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。

一般的级数u1+u2+...+un+...它的各项为任意级数。如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式