求函数y=cos^3x-(x-1)/√x的微分
1个回答
展开全部
y
=(cosx)^3-(x-1)/√x
=(cosx)^3-√x + x^(-1/2)
dy
= 3(cosx)^2. d(cosx)- (1/2)x^(-1/2) dx - (1/2)x^(-3/2) dx
= 3(cosx)^2. (-sinx dx)- (1/2)x^(-1/2) dx - (1/2)x^(-3/2) dx
=[-3sinx.(cosx)^2- (1/2)x^(-1/2)- (1/2)x^(-3/2) ]dx
=(cosx)^3-(x-1)/√x
=(cosx)^3-√x + x^(-1/2)
dy
= 3(cosx)^2. d(cosx)- (1/2)x^(-1/2) dx - (1/2)x^(-3/2) dx
= 3(cosx)^2. (-sinx dx)- (1/2)x^(-1/2) dx - (1/2)x^(-3/2) dx
=[-3sinx.(cosx)^2- (1/2)x^(-1/2)- (1/2)x^(-3/2) ]dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询