正四面体内切球半径是什么?
1个回答
展开全部
内切球半径:
设正四面体是S-ABC,过点S作高线SH交底面ABC于点H,则内切球球心在SH上,设其半径是R,则主要就产生四个四面体:O-SAB、O-SBC、O-SCA、O-ABC,这四个四面体的高都是内切球的半径R,底面都是以a为边长是正三角形,利用等体积法可以求出内切球半径R的值。
注意:
球心到某几何体各面的距离相等且等于半径的球是几何体的内切球。如果一个球与简单多面体的各面或其延展部分都相切,且此球在多面体的内部,则称这个球为此多面体的内切球。
与圆柱两底面以及每条母线都相切的球称为这个圆柱的内切球,此圆柱称为球的外切圆柱。与圆台的上、下底面以及每条母线都相切的球,称为圆台的内切球,此圆台称为球的外切圆台 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询