║║是什么符号呢?

 我来答
金墙刺纱腰i
2022-02-05 · TA获得超过5884个赞
知道小有建树答主
回答量:2016
采纳率:100%
帮助的人:36.4万
展开全部

是范数符号。

范数是是数学中的一种基本概念,是具有“长度”概念的函数,用“║║”来表示。

线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。

简介

如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

舒仕福
2023-07-11 广告
eor有以下两种含义:1. eor是计算机术语,表示二进制异或运算。在计算机逻辑运算中,算术逻辑执行二进制按位异或运算,两数执行异或后相同位结果为0,不同位结果为1。2. eor也表示在任何时期,向地层中注入流体、能量,以提高产量或采收率的... 点击进入详情页
本回答由舒仕福提供
安静的小军犬
2022-02-12 · 超过123用户采纳过TA的回答
知道小有建树答主
回答量:417
采纳率:83%
帮助的人:19.4万
展开全部

是范数符号。

范数是是数学中的一种基本概念,是具有“长度”概念的函数,用“║║”来表示。

在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。

在泛函分析中,范数定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。



内积、度量、拓扑和范数的关系:

(1)范数——度量——拓扑:d(x,y) =║x-y║,因此赋范线性空间是度量空间;但是由度量不一定可以得到范数。

(2)如果赋范线性空间作为(由其范数自然诱导度量d(x,y) =║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。

(3)如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式