相似矩阵的行列式是否相等?

 我来答
枕流说教育
高能答主

2022-02-10 · 教育就是忘记在校学得的内容后所剩的本事。
枕流说教育
采纳数:506 获赞数:43028

向TA提问 私信TA
展开全部

相似矩阵的行列式相等。

根据相似矩阵的定义就可知,相似矩阵的行列式是相等的。因为所谓的相似矩阵必须具有相同的特征值、特征行列式,行列式也是相等的。另外,两矩阵的迹、秩,都是相等的。而且相似矩阵行列式相等也是因为矩阵的行列式的乘积等于矩阵乘积的行列式。

相似矩阵的性质:

两者的秩相等。

两者的行列式值相等。

两者的迹数相等。

两者拥有同样的特征值,尽管相应的特征向量一般不同。

两者拥有同样的特征多项式。

两者拥有同样的初等因子。

若A与对角矩阵相似,则称A为可对角化矩阵,若n阶方阵A有n个线性无关的特征向量,则称A为单纯矩阵。

相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式