矩阵与伴随矩阵的秩的关系是什么?

 我来答
小精灵教育知识铺
高能答主

2022-02-11 · 教育是人们灵魂的教育,而非理智知识和认识的堆积。
小精灵教育知识铺
采纳数:132 获赞数:3624

向TA提问 私信TA
展开全部

矩阵与伴随矩阵的秩的关系是:R(A)=n,即A可逆,$A^{*}A=E$,秩为n。R(A)=n-1时,则至少有一个n-1代数余子式不为0,即秩≥1。

又由线性方程组理论矩阵A和其伴随矩阵秩的和≤n,可得秩为1。R(A)<n-1时,n-1代数余子式全为0,即伴随矩阵为零矩阵。

解析:

注意到,由上述分析,交换矢量的顺序,面积的值取负号,这也就是为什么行列式中,交换列向量或者行向量一次,就要取一次负号的原因。

行列式的其他计算性质,都一一反映在面积映射的线性性之中。由此我们可见,行列式就是关于“面积”的推广。他就是在给定一组基下,N个向量张成的一个N维广义四边形的体积。这就是行列式的本质含义。

设A是n阶矩阵,若r(A)=n,则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式