多元线性回归分析步骤
2023-09-05 · 百度认证:SPSSAU官方账号,优质教育领域创作者
多元线性回归分析步骤
01、数据处理 02、基本关系查看(线性和相关)03、线性回归结果(模型效果、模型结果)
线性回归分析模型效果的结果如下:
从上表可以看出,离差平方和为162.149,残差平方和为152.062,而回归平方和为10.086。回归方程的显著性检验中,统计量F=2.574,对应的p值小于0.05,被解释变量的线性关系是显著的,可以建立模型。建立模型后,需要查看模型拟合优度是否可以,其中就可以查看R方与调整R方值。
拟合优度:
从上表可知,将社会资源, 教育水平, 科技发展作为自变量,而将创业可能性作为因变量进行线性回归分析,从上表可以看出,模型R方值为0.062,调整R方为0.038,其中R方是决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。调整R方也是模型拟合指标。当x个数较多是调整R²比R²更为准确。意味着社会资源, 教育水平, 科技发展可以解释创业可能性的6.2%变化原因。可见,模型拟合优度一般,说明被解释变量可以被模型解释的部分较少。接下来查看变量是否具有多重共线性。
VIF值用于检测共线性问题,一般VIF值小于10即说明没有共线性(严格的标准是5),有时候会以容差值作为标准,容差值=1/VIF,所以容差值大于0.1则说明没有共线性(严格是大于0.2),VIF和容差值有逻辑对应关系,因此二选一即可,一般描述VIF值。在【线性回归】分析时,SPSSAU会智能判断共线性问题并且提供解决建议。 结果中可以看出,变量的VIF值均小于5,所以此案例不存在多重共线性的问题。
从上表可知,将教育水平,社会资源,科技发展,性别,年龄作为自变量,而将创业可能性作为因变量进行线性回归分析,从上表可以看出,模型公式为:创业可能性=2.114 + 0.251*教育水平 + 0.026*社会资源 + 0.013*科技发展-0.172*性别 + 0.024*年龄。
最终分析可知:教育水平的回归系数值为0.251(t=2.934,p=0.004<0.01),意味着教育水平会对创业可能性产生显著的正向影响关系。社会资源的回归系数值为0.026(t=0.271,p=0.787>0.05),意味着社会资源并不会对创业可能性产生影响关系。科技发展的回归系数值为0.013(t=0.140,p=0.889>0.05),意味着科技发展并不会对创业可能性产生影响关系。
性别的回归系数值为-0.172(t=-1.212,p=0.227>0.05),意味着性别并不会对创业可能性产生影响关系。年龄的回归系数值为0.024(t=0.297,p=0.767>0.05),意味着年龄并不会对创业可能性产生影响关系。
总结分析可知:教育水平会对创业可能性产生显著的正向影响关系。但是社会资源, 科技发展, 性别, 年龄并不会对创业可能性产生影响关系。
如果说自变量X已经对因变量Y产生显著影响(P< 0.05),还想对比影响大小,建议可使用标准化系数值的大小对比影响大小,Beta值大于0时正向影响,该值越大说明影响越大。Beta值小于0时负向影响,该值越小说明影响越大。上图所示,回归方程的常数项约为2.114,教育水平,社会资源,科技发展,性别,年龄的标准化系数分别为0.218、0.022、0.011、-0.085、0.021。可以看出模型中教育水平对创业可能性影响较大。
2023-08-15 广告
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。设y为因变量,x_1,x_2,\cdotsx_k为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:y=b_0+b_1x_1+b_2x_2+\cdots+b_kx_k+e其中,b0为常数项,b_1,b_2,\cdotsb_k为回归系数。
b1为x_2,x_3\cdotsx_k固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为x1,xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线性相关时,可用二元线性回归模型描述为:y=b0+b1x1+b2x2+e。