贝塞尔曲线原理

 我来答
黑科技1718
2022-07-13 · TA获得超过5869个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.5万
展开全部
由于用计算机画图大部分时间是操作鼠标来掌握线条的路径,与手绘的感觉和效果有很大的差别。即使是一位精明的画师能轻松绘出各种图形,拿到鼠标想随心所欲的画图也不是一件容易的事。这一点是计算机万万不能代替手工的工作,所以到目前为止人们只能颇感无奈。使用贝塞尔工具画图很大程度上弥补了这一缺憾。

贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一。它通过控制曲线上的四个点( 起始点、终止点以及两个相互分离的中间点 )来创造、编辑图形。其中起重要作用的是位于 曲线中央的控制线 。这条线是虚拟的,中间与贝塞尔曲线交叉,两端是控制端点。 移动两端的端点时贝塞尔曲线改变曲线的曲率(弯曲的程度) ; 移动中间点(也就是移动虚拟的控制线)时,贝塞尔曲线在起始点和终止点锁定的情况下做均匀移动 。注意,贝塞尔曲线上的所有控制点、节点均可编辑。这种“智能化”的矢量线条为艺术家提供了一种理想的图形编辑与创造的工具。

一阶贝塞尔(直线)

一阶贝赛尔曲线上的由两个点确定  P0 和P1,当t在0--->1区间上递增时,根据

此会得到多个点的坐标,其实这些的点就是一条直线上的点。

B(t) = P0 + (P1-P0)*t

B(t) = (1-t)P0 + tP1

//=>

B(t).x = (1-t)P0.x + tP1.x

B(t).y = (1-t)P0.y + tP1.y

二阶贝塞尔曲线

二阶贝赛尔曲线由`3`个点确定,它可以理解成是这样的一阶贝赛尔曲线:确定该`一阶贝赛尔曲线`的两个点是变化的。

这两个点(设分别为Pm,Pn)是怎样变化的呢,这两个点又分别是(P0,P1)确定的`一阶贝赛尔曲线`和(P1,P2)确定的`一阶贝赛尔`

Pm(t) = (1-t)P0 + tP1

Pn(t) = (1-t)P1 + tP2

B(t) = (1-t)Pm(t) + tPn(t)

= (1-t)^2 P0 + 2(1-t)tP1+ t^2P2

三阶贝塞尔曲线

特点一:曲线通过始点和终点,并与特征多边形首末两边相切于始点和终点,中间点将曲线拉向自己。

特点二:平面离散点控制曲线的形状,改变一个离散点的坐标,曲线的形状将随之改变(点对曲线具有整体控制性)。

特点三:曲线落在特征多边形的凸包之内,它比特征多边形更趋于光滑。

特点四:贝塞尔曲线属于“平均通过”式曲线。

数据点: 指一条路径的起始点和终止点。

控制点:控制点决定了一条路径的弯曲轨迹。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东莞大凡
2024-11-19 广告
九点标定是东莞市大凡光学科技有限公司采用的一种高精度校准技术,通过使用特定的标定板来实现。标定板上精确设置了九个标记点,这些点在空间中的位置已知且固定。在进行相机或光学系统的标定时,通过拍摄这些标记点并计算其图像坐标与世界坐标的对应关系,可... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式