y'+p(x)y=q(x)的通解是什么?
展开全部
e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)。
先算对应的齐次方程的解。
y'+P(x)y=0
y'/y=-P(x)
lny=-∫P(x)dx+C
y=ke^(-∫P(x)dx)
下面用常数变易法求解原方程的解。
设k为u(x)
y=u(x)e^(-∫P(x)dx)
y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)
代入得:
Q(x)
=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P(x)dx)
u(x)=∫Q(x)e^(∫P(x)dx)+C
y=e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)
求法:
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询