y=|x|为什么不可导?
1个回答
展开全部
y=|x|实际上实际上是分段函数,y=x(x>=0),y=-x(x=<0),分别求导就会发现,其y=x导数为y=1,y=-x导数为y=-1,也就是说这两段导数在x=0处不连续,则该函数在x=0处不可导。
分段函数就是对于自变量x的不同的取值范围,有着不同的解析式的函数。它是一个函数,而不是几个函数,分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。
相关信息:
导数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话。
函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询