复数的指数形式是什么?

 我来答
小小杰小生活
高能答主

2022-02-07 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:1853
采纳率:98%
帮助的人:39.6万
展开全部

复数指数形式:e^(iθ)=isinθ+cosθ。

证明方法就是把e^(iθ)和sinθ,cosθ展开成无穷级数

将复数化为三角表示式和指数表示式是:复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=r*exp(iθ)。

exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。

复数有多种表示形式:代数形式、三角形式和指数形式等。

代数形式:z=a+bi,a和b都是实数,a叫做复数的实部,b叫做复数的虚部,i是虚数单位,i^2=-1。

三角形式:z=r(cosθ+isinθ)。r=√(a^2+b^2),是复数的模(即绝对值),θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,辐角的主值记作arg(z)。

两角和公式:

sin(A+B) = sinAcosB+cosAsinB。

sin(A-B) = sinAcosB-cosAsinB。

cos(A+B) = cosAcosB-sinAsinB。

cos(A-B) = cosAcosB+sinAsinB。

tan(A+B) = (tanA+tanB)/(1-tanAtanB)。

tan(A-B) = (tanA-tanB)/(1+tanAtanB。

以上内容参考:百度百科-复数

生活达人唐鲜生
2023-07-15 · TA获得超过124个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:80.4万
展开全部
复数的指数形式是e^(iθ),其中是自然常数(约等于2.71828),i是虚数单位(i^2=-1),θ是实数角度。这个指数形式又称为欧拉公式或欧拉表示法。通过欧拉公式,我们可以将复数表示为一个幅度和一个相位的乘积。

具体地,一个复数z可以表示为z = |z|e^(iθ),其中|z|是复数的模(绝对值),θ是复数的辐角(幅角)。将复数用指数形式表示可以方便进行复数的计算、运算和表达。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
RlWbAImeng
2023-07-20
知道答主
回答量:30
采纳率:0%
帮助的人:8653
展开全部

复数的指数形式是指将复数表示为一个幅度和一个相位的乘积,其中幅度是实数,相位是虚数。这个指数形式又称为欧拉公式或欧拉表示法。

例如,对于复数z=a+bi,其指数形式为 e(z)=e(a)+b(i)=e(a)⋅e(b⋅i)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式