高中极坐标方程必背公式
1个回答
展开全部
极坐标方程必背公式:x=r/cos/theta,y=r/sin/theta,极坐标系中的两个坐标r和θ可以由上面的公式转换为直角坐标系下的坐标值。
在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
极坐标方程描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(_θ)=r(θ),则曲线关于极点(0°/180°)对称,如果r(π-θ)=r(θ),则曲线关于极点(90°/270°)对称,如果r(θ_α)=r(θ),则曲线相当于从极点逆时针方向旋转α°。
在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
极坐标方程描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(_θ)=r(θ),则曲线关于极点(0°/180°)对称,如果r(π-θ)=r(θ),则曲线关于极点(90°/270°)对称,如果r(θ_α)=r(θ),则曲线相当于从极点逆时针方向旋转α°。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询