奇函数的积分一定收敛。
虽然被积函数是奇函数,积分区间也是关于原点对称的,但是因为这是-∞到+∞的,根据这种反常积分的定义规定,必须分成-∞到0和0到+∞两个区间分别算,两个区间的定积分都存在,才说-∞到+∞的定积分存在。其中至少1个不存在,则说-∞到+∞的定积分不存在,是发散的。
基本介绍
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。