帮我解一道数学题 已知 y=arcsinh(x)/[根号下(1+x^2)] 求 (1+x^2)dy/dx+xy=1
1个回答
展开全部
y = arcsin(x)/(1+x^2)^(1/2)
dy/dx = {(1+x^2)^(1/2)/(1-x^2)^(1/2) - xarcsin(x)/(1+x^2)^(1/2)}/(1+x^2),
(1+x^2)dy/dx + xy = {(1+x^2)^(1/2)/(1-x^2)^(1/2) - xarcsin(x)/(1+x^2)^(1/2)} + xarcsin(x)/(1+x^2)^(1/2)
= (1+x^2)^(1/2)/(1-x^2)^(1/2)
= (1-x^4)^(1/2)/(1-x^2)
dy/dx = {(1+x^2)^(1/2)/(1-x^2)^(1/2) - xarcsin(x)/(1+x^2)^(1/2)}/(1+x^2),
(1+x^2)dy/dx + xy = {(1+x^2)^(1/2)/(1-x^2)^(1/2) - xarcsin(x)/(1+x^2)^(1/2)} + xarcsin(x)/(1+x^2)^(1/2)
= (1+x^2)^(1/2)/(1-x^2)^(1/2)
= (1-x^4)^(1/2)/(1-x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询