
如何化简
展开全部
解:
令x^(1/3)=t,则x=t^3
(x-1)/[x^(2/3)+x^(1/3)+1]+(x+1)/[x^(1/3)+1]-[x-x^(1/3)]/[x^(1/3)-1]
=(t^3-1)/(t^2+t+1)+(t^3+1)/(t+1)-(t^3-t)/(t-1)
=(t-1)(t^2+t+1)/(t^2+t+1)+(t+1)(t^2-t+1)/(t+1)-t(t+1)(t-1)/(t-1)
=t-1+t^2-t+1-t^2-t
=-t
=-x^(1/3)
令x^(1/3)=t,则x=t^3
(x-1)/[x^(2/3)+x^(1/3)+1]+(x+1)/[x^(1/3)+1]-[x-x^(1/3)]/[x^(1/3)-1]
=(t^3-1)/(t^2+t+1)+(t^3+1)/(t+1)-(t^3-t)/(t-1)
=(t-1)(t^2+t+1)/(t^2+t+1)+(t+1)(t^2-t+1)/(t+1)-t(t+1)(t-1)/(t-1)
=t-1+t^2-t+1-t^2-t
=-t
=-x^(1/3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询