ssa可以证明三角形全等吗?
不可以。边边角其中一角相等,且非夹角的两边相等。
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。全等三角形是几何中全等之一。
根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。
三角形角的性质
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360° (外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
有两种情况的:SSA也不是完全不能证明三角形全等。
1、在锐角三角形的情况下,SSA不可以证明三角形全等。因为假设ABC是等腰三角形,D是BC延长线上一点 。则ADC和ADB满足SSA: AD=AD,AC=AB,∠D=∠D,均满足条件。但是两个三角形不全等。
2、在钝角三角形的情况下,SSA可以证明三角形全等。可以作一条高。先证两个小直角三角形全等,然后可知高相等,再证另两个小直角三角形全等。即可已知SSS,便可以证两个钝角三角形全等。
简介:
一般来说线段和角相等需要证明全等。因此可以来采取逆向思维的方式。来想要证全等,则需要什么条件要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
然后把所得的等式运用(SSS/SAS/ASA/AAS/HL)证明三角形全等。有时还需要画辅助线帮助解题。常用的辅助线有:中线倍长,截长补短等。分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。
三角形分为三种,直角三角形、钝角三角形和锐角三角形其中,直角三角形有HL的独有的判定方法,(以下的是SSA的判定方法):
锐角三角形判定全等的条件:
(1)AB<AC且A'B'<A'C' (2)∠B与∠B'已知均为锐角
AB=A'B' AC=A'C' ∠B=∠B'
△ABC≌△A'B'C'(锐SSA)
钝角三角形判定全等的条件:
∠B与∠B'均为钝角
AB=A'B' AC=A'C' ∠B=∠B'
△ABC≌△A'B'C'