arima模型数据如何整理

 我来答
努力工作小咸鱼
高能答主

2022-03-07 · 世界很大,慢慢探索
知道小有建树答主
回答量:2141
采纳率:86%
帮助的人:37.2万
展开全部
1.数据的预处理。对时间序列数据的平稳性和纯随机性进行检验,根据检验结果来判断时间序列的类型,以便选择合适的方法建立模型。

平稳性是指围绕着一个常数上下波动且波动范围有限,即有常数均值和常数方差。如果有明显的上升或下降趋势或周期性,那它通常不是平稳序列。

三种常用的检验平稳性的方法:

(1)时序图。通过时序图来观察。一般而言,平稳序列始终在一个常数值附近随机波动,且波动范围有界;非平稳序列则有明显的趋势性或周期性。

(2)自相关与偏相关系数检验。在自相关图中,在那一阶数值高于虚线即表明自相关系数>0.5,就存在那一阶自相关(偏自相关一样)。随着滞后数(延迟期数)的增加,平稳序列自相关系数会很快衰减至0而非平稳序列衰减速度通常较慢。若自相关图呈现三角对称性则为单调趋势的非平稳序列。自相关系数长期位于零轴一边表示有单调趋势序列。自相关系数呈现明显正弦波动规律则表明有周期变化规律。

(3)单位根检验(ADF)。单位根检验是指检验序列中是否存在单位根,如果存在单位根就是非平稳时间序列。若P值<0.05,为平稳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式