与平面垂直的向量是法向量吗
垂直于平面的直线所表示的向量为平面的法向量。空间内有无数个直线垂直于已知平面,因此一个平面存在无数个法向量,这些法向量之间相互平行。同时平面的法向量与该平面垂直。
法线的定义
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。
法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
曲面法线的法向不具有唯一性(uniqueness),在相反方向的法线也是曲面法线。曲面在三维的边界(topological boundary)内可以分区出inward-pointing normal 与 outer-pointing normal, 有助于定义出法线唯一方法(unique way)。定向曲面的法线通常按照右手定则来确定。
2024-12-30 广告