如何证明对合矩阵和幂等矩阵是可相似对角化的?

 我来答
帐号已注销
2021-12-13 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

证明对合矩阵和幂等矩阵是可相似对角化的:n级矩阵A可对角化<=>A的属于不同特征值的特征子空间维数之和为n。

先求特征值,如果没有相重的特征值,一定可对角化;如果有相重的特征值λk,其重数为k,那么你通过解方程(λkE-A)X=0得到的基础解系中的解向量若也为k个,则A可对角化,若小于k,则A不可对角化。

定义

对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。说明:当A的特征方程有重根时,就不一定有n个线性无关的特征向量,从而未必能对角化。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式