根号的运算法则是什么?
2个回答
展开全部
根号加减乘除运算法则是√a+√b=√b+√a,√a-√b=-(√b-√a),√a√b=√(ab),√a/√b=√(a/b)等等根号是一个数学符号。
一、二次根式的加减。
二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
注意:
1、二次根式的加减常分为两大步骤进行,第一步化简,第二步合并。
2、在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变。
二、二次根式的乘除。
二次根式相乘,等于被开方数的积的算术平方根。
二次根式相除,等于被开方数的商的算术平方根。
根号的书写规范:
1、写根号:
先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。
2、写被开方的数或式子:
被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。
3、写开方数或者式子:
开n次方的n写在符号√ ̄的左边,n=。
展开全部
根号及运算法则:成立条件:a≥0,n≥2且n∈N。成立条件:a≥0,n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。
性质:在实数范围内:(1)偶次根号下不能为负数,其运算结果也不为负。
(2)奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
性质:在实数范围内:(1)偶次根号下不能为负数,其运算结果也不为负。
(2)奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询