正交矩阵的行列式是什么?
正交阵:AA^T=E,取行列式为|A||A^T|=1,由于|A^T|=|A|,因此|A|^2=1,于是|A|=1或-1。
设A是正交矩阵:
则 AA^T=E。
两边取行列式得:|AA^T| = |E| = 1。
而 |AA^T| = |A||A^T| = |A||A| = |A|^2。
所以 |A|^2= 1。
所以 |A| = 1 or -1。
定义及概述:
定义:A是一个n阶方阵,Aт是A的转置。如果有AтA=E(单位阵),即Aт等于 A的逆,则称A是正交矩阵。
正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素正交矩阵来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。
要看出与内积的联系,考虑在 n 维实数内积空间中的关于正交基写出的向量 v。v 的长度的平方是 vTv。
有多种原由使正交矩阵对理论和实践是重要的。n×n 正交矩阵形成了一个群,即指示为 O(n) 的正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是 O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如 QR分解的关键,通过适当的规范化,离散余弦变换 (用于 MP3 压缩)可用正交矩阵表示。
阶实矩阵 A称为正交矩阵,如果:A×Aт=E。
2024-06-06 广告