2个回答
2010-10-08
展开全部
定义证明法,是高中的吧,那就是假设定义域内的自变量x1和x2,有x2>x1,在区间内恒有f(x2)>f(x1),那么就称该区间为f(x)的单调增区间,减区间类似定义.
复合函数法就是把函数分解,分别研究各个函数的单调性,用复合函数的单调研究法来推断复合函数的单调区间.比如y=根号(sinx),你就可以认为是y=根号x和
y=sinx复合的函数,分别研究这两个比较简单的函数的单调性,就可以推断原函数的单调区间.
转化法就是用各种手段把不熟悉的函数转换成熟悉的函数,比如y=arcsinx,我们不是很熟悉,但是它的反函数x=siny我们很熟悉,通过转换我们也可以研究它的单调区间.
复合函数法就是把函数分解,分别研究各个函数的单调性,用复合函数的单调研究法来推断复合函数的单调区间.比如y=根号(sinx),你就可以认为是y=根号x和
y=sinx复合的函数,分别研究这两个比较简单的函数的单调性,就可以推断原函数的单调区间.
转化法就是用各种手段把不熟悉的函数转换成熟悉的函数,比如y=arcsinx,我们不是很熟悉,但是它的反函数x=siny我们很熟悉,通过转换我们也可以研究它的单调区间.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询