用反证法证明:圆内不是直径的两条弦不能互相平分. 我来答 1个回答 #合辑# 面试问优缺点怎么回答最加分? 一袭可爱风1718 2022-06-23 · TA获得超过1.3万个赞 知道大有可为答主 回答量:6686 采纳率:99% 帮助的人:38.4万 我也去答题访问个人页 关注 展开全部 证明:假设圆内不是直径的两条弦AC和BD互相平分于P, ∵四边形ABCD的对角线互相平分于P, ∴四边形ABCD是平行四边形, 又∵四边形ABCD是圆内接四边形, 则∠DAB与∠BCD互补, 则∠DAB与∠BCD都是直角(平行四边形对角相等),AC是直径,与假设矛盾, 所以原命题正确. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: