求极限:当x趋向正无穷大的时候(1-[x])/(3x+4) [x]为取整 答案是-1/3

 我来答
华源网络
2022-09-08 · TA获得超过5617个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:150万
展开全部
当x→∞时,x>0,所以有x-1<[x]≤x
则1-(x-1)>1-[x]≥1-x,即1-x≤1-[x]<2-x
当x→∞时,x>0,所以3x+4>0
则(1-x)/(3x+4)≤(1-[x])/(3x+4)<(2-x)/(3x+4)
注意到lim(x→∞)(1-x)/(3x+4)=lim(x→∞)(1/x-1)/(3+4/x)=-1/3
且lim(x→∞)(2-x)/(3x+4)=lim(x→∞)(2/x-1)/(3+4/x)=-1/3
则可利用夹逼定理:
由lim(x→∞)(1-x)/(3x+4)=lim(x→∞)(2-x)/(3x+4)=-1/3,且(1-x)/(3x+4)≤(1-[x])/(3x+4)<(2-x)/(3x+4)
得lim(x→∞)(1-[x])/(3x+4)=-1/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式