求全微分 求由方程xyz+√(x^2+y^2+z^2)=√2所确定函数z=z(x,y)在点(1,0,
2个回答
展开全部
xyz + √(x^2+y^2+z^2) = √2, x = 1, y = 0 时,z = ±1.
记 F = xyz + √(x^2+y^2+z^2) - √2, 则
Fx = yz + x/√(x^2+y^2+z^2) ;Fy = xz + y/√(x^2+y^2+z^2),
Fz = xy + z/√(x^2+y^2+z^2)
∂z/∂x = -Fx/Fz = -[yz + x/√(x^2+y^2+z^2)]/[xy + z/√(x^2+y^2+z^2)]
= - [yz√(x^2+y^2+z^2) + x]/[xy√(x^2+y^2+z^2) + z]
∂z/∂y = -Fy/Fz = -[xz + y/√(x^2+y^2+z^2)]/[xy + z/√(x^2+y^2+z^2)]
= - [xz√(x^2+y^2+z^2) + y]/[xy√(x^2+y^2+z^2) + z]
在点 (1, 0, 1), ∂z/∂x = -1, ∂z/∂y = -√2, dz = - dx - √2dy ;
在点 (1, 0, -1), ∂z/∂x = 1, ∂z/∂y = -√2, dz = dx - √2dy .
记 F = xyz + √(x^2+y^2+z^2) - √2, 则
Fx = yz + x/√(x^2+y^2+z^2) ;Fy = xz + y/√(x^2+y^2+z^2),
Fz = xy + z/√(x^2+y^2+z^2)
∂z/∂x = -Fx/Fz = -[yz + x/√(x^2+y^2+z^2)]/[xy + z/√(x^2+y^2+z^2)]
= - [yz√(x^2+y^2+z^2) + x]/[xy√(x^2+y^2+z^2) + z]
∂z/∂y = -Fy/Fz = -[xz + y/√(x^2+y^2+z^2)]/[xy + z/√(x^2+y^2+z^2)]
= - [xz√(x^2+y^2+z^2) + y]/[xy√(x^2+y^2+z^2) + z]
在点 (1, 0, 1), ∂z/∂x = -1, ∂z/∂y = -√2, dz = - dx - √2dy ;
在点 (1, 0, -1), ∂z/∂x = 1, ∂z/∂y = -√2, dz = dx - √2dy .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询