∫(2-3x²)/x³dx的不定积分怎么求
∫(2-3x²)/x³dx的不定积分怎么求
=2∫1/x³dx-3∫1/xdx
=-2*1/2x^2-3ln|x|+C
=-1/(x^2)-3ln|x|+C
求解,不定积分∫(x³-2x²+3)dx
:∫x³/(x²+2x-3)dx=∫(x³+2x-3x-2x+3)/(x²+2x-3)dx =∫x+3/(x²+2x-3)dx =∫xdx+3∫1/(x²+2x-3)dx =x²/2+3∫1/[(x-1)(x+1)]dx =x²/2+3/4∫1/(x-1)-1/(x+3)]dx = x²/2+3/4ln|x-1|-3/4ln|x+3|+C
求不定积分,∫x(∛x-2/x²+1/x³)dx
∫x(∛x-2/x²+1/x³)dx
=∫[x^(4/3)-2/x+1/x²]dx
=3/7 x^(7/3)-2ln|x|-1/x+c
求不定积分∫(3/(x³+1))dx
补充 : ln|1+x |-1/2ln(x²-x+1)+2/3∫1/(x²-x+1)dx
=ln|1+x |-1/2ln(x²-x+1)+2/3∫1/[(x-1/2)²+(√3/2)²]d(x-1/2)
=ln|1+x |-1/2ln(x²-x+1)+√3arctan(2x-1)/√3 +c
求∫x/x³-1 dx 的不定积分
∫ (x²/1+x²) =∫(x²+1-1)/(x²+1)dx =∫1-[1/(x²+1)]dx =x-arctanx+C
∫(x³+x-1)/(x²+2)²不定积分
解:∵∫[1/(x^2+2)^2]dx
=(√2/4)∫(cosy)^2dy (令x=√2tany,再化简)
=(√2/8)∫[1+cos(2y)]dy (应用倍角公式)
=(√2/8)[t+sin(2y)/2]-C (C是常数)
=(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]-C
∴∫[(x^3+x-1)/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2-x/(x^2+2)^2-1/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2]dx-∫[x/(x^2+2)^2]dx-∫[1/(x^2+2)^2]dx
=∫d(x^4+4x^2+4)/(x^4+4x^2+4)-(1/2)∫d(x^2+2)/(x^2+2)^2-∫[1/(x^2+2)^2]dx
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]+C
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)arctan(√2/x)-(x/8)/√(x^2+2)+C。
不定积分∫f′(x³)dx=x³+c求f(x)
由于∫3x²dx=x³+C
因此可知:f '(x³)=3x² (1)
令x³=u,则x²=u^(2/3)
(1)化为:f '(u)=3u^(2/3)
两边积分得:f(u)=3*(3/5)*u^(5/3)+C
即:f(x)=(9/5)x^(5/3)+C
计算不定积分∫x²/(1 x³)½dx
\int\frac{x^2}{\sqrt{1+x^3}}dx
=1/3\int\frac{dx^3}{\sqrt{1+x^3}}
=2/3\sqrt{1+x^3}+C
(x²+√x³+3)÷√x的不定积分
展开即得到
∫x³/(x+3) dx
=∫x² -3x+9 -27/(x+3) dx
那么使用公式∫x^n dx=1/(n+1) x^(n+1)和 ∫1/x dx=lnx
得到原积分
= x³ /3 -2x²/2 +9x -27ln|x+3| +C,C为常数
不定积分 ∫x³/(9+x²)dx的解答过程
∫x³/(9+x²)dx
= ∫(x³+9x-9x)/(9+x²)dx
=∫xdx-9∫x/(9+x²)dx
=x²/2-9/2∫1/(9+x²)d(9+x²)
=x²/2-9/2ln(9+x²)+c