函数的可微性与连续性的关系

 我来答
百度网友19d0e82
高粉答主

2022-10-09 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:549
采纳率:98%
帮助的人:15.7万
展开全部

一、函数可微的判断

1、函数可微的必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、函数可微的充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

二、多元函数可微的条件

多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

扩展资料:

微分的推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

得出: 当△x→0时,△y≈dy。 

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

参考资料来源:百度百科-可微性

茹翊神谕者

2023-08-27 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1539万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式