函数f(x)=x^2+2x+alnx在(0,1]上恒为单调函数,求a的取值范围

 我来答
户如乐9318
2022-08-26 · TA获得超过6673个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
对f(x)求导,得到:
f'(x)=2x+2+a/x
①令f'(x)≥0在(0,1]上恒成立,则:
2x+2+a/x≥0在(0,1]上恒成立,即:2x^2+2x+a≥0在(0,1]上恒成立!
△=4-8a≤0→a≥1/2
②令f'(x)≤0在(0,1]上恒成立,则:
2x^2+2x+a≤0在(0,1]上恒成立
此抛物线在(0,1]上单调递增!
故(2x^2+2x+a)|(x=1)≤0,即4+a≤0,→a≤-4
综上:a≥1/2或者a≤-4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式