关于线段与角的应用题
1个回答
展开全部
例1. 如图1,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.求∠DOE的度数.
因为OD、OE分别是∠AOC、∠COB的平分线,
所以∠COD= ∠AOC,∠COE= ∠COB,
所以∠DOE=∠DOC+∠COE= ∠AOC+ ∠COB= (∠AOC+∠COB)= ∠AOB= ×180°=90°.
例2.如图2,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=35°,求∠AOD的度数.
分析:和图形有关的角度计算告源问题,需要从图形中找到角与角之间的关系.本题要求∠AOD的读数,则只要求出∠COD的度数即可.
因为∠BOC=∠AOC-∠AOB=90°-35°=55°,
又OC平分∠BOD,
所以∠COD=∠BOC=55°,
所以∠AOD=∠AOC+∠COD=90°+55°=145°
【评注】解决与图形有关的角的计算问题关键将所求的角转化为已知角求解.
例3.如图3,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC,
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,其它条件不变,求∠MON的度数;
(3)如果(1)中∠AOC=β(β为锐角),其它条件不变,求∠MON的度数;
(4)从(1)、(2)、(3)的结果中,你能看出什么规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.
请你模仿(1)~(昌闭4)设计一道以线段为背景的计算题,并写出其中的规律来.
此题是从特殊化的图形中,寻求解题的思路.然袜迅态后回到一般图形中,探求一般规律,这也是我的解决数学问题的一种常用的思考方法.
(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.
因为OM平分∠BOC,所以∠COM=12 ∠BOC=60°.
因为ON平分∠AOC,所以∠CON=12 ∠A OC=12 ×30°=15°.
所以∠MON=∠COM-∠CON=60°-15°=45°;
(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON= 12 α;
(3)仿(1)可求得∠MON=∠COM-∠CON
因为OD、OE分别是∠AOC、∠COB的平分线,
所以∠COD= ∠AOC,∠COE= ∠COB,
所以∠DOE=∠DOC+∠COE= ∠AOC+ ∠COB= (∠AOC+∠COB)= ∠AOB= ×180°=90°.
例2.如图2,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=35°,求∠AOD的度数.
分析:和图形有关的角度计算告源问题,需要从图形中找到角与角之间的关系.本题要求∠AOD的读数,则只要求出∠COD的度数即可.
因为∠BOC=∠AOC-∠AOB=90°-35°=55°,
又OC平分∠BOD,
所以∠COD=∠BOC=55°,
所以∠AOD=∠AOC+∠COD=90°+55°=145°
【评注】解决与图形有关的角的计算问题关键将所求的角转化为已知角求解.
例3.如图3,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC,
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,其它条件不变,求∠MON的度数;
(3)如果(1)中∠AOC=β(β为锐角),其它条件不变,求∠MON的度数;
(4)从(1)、(2)、(3)的结果中,你能看出什么规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.
请你模仿(1)~(昌闭4)设计一道以线段为背景的计算题,并写出其中的规律来.
此题是从特殊化的图形中,寻求解题的思路.然袜迅态后回到一般图形中,探求一般规律,这也是我的解决数学问题的一种常用的思考方法.
(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.
因为OM平分∠BOC,所以∠COM=12 ∠BOC=60°.
因为ON平分∠AOC,所以∠CON=12 ∠A OC=12 ×30°=15°.
所以∠MON=∠COM-∠CON=60°-15°=45°;
(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON= 12 α;
(3)仿(1)可求得∠MON=∠COM-∠CON
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询