无穷级数(-1)^n*(lnn)^p/n (p>0)敛散性 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 黑科技1718 2022-09-16 · TA获得超过5894个赞 知道小有建树答主 回答量:433 采纳率:97% 帮助的人:82.6万 我也去答题访问个人页 关注 展开全部 设f(x)=(lnx)^p/x,求导可知当x足够大时,f'(x) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-08-16 高数。判断lnn/n的敛散性(n从1到无穷)!!求大佬帮忙解下啊!!万分感谢!!! 4 2021-06-13 讨论级数(-1)^n·lnn/n^p的敛散性 1 2022-06-16 常数项无穷级数1/n(ln(n))敛散性证明 2021-06-14 无穷级数(-1)^n*(lnn)^p/n (p>0)敛散性 2021-06-22 高数求解,讨论无穷级数(n=1)ln[1+(-1)^(n-1)/n^p]敛散性 2022-08-31 无穷级数n从0到无穷,[(n!)/(n^n ]x^n的收敛区间 2022-06-27 无穷级数问题 证明级数∑1/[n^p*(lnn)^q](0 ln(n) 2022-09-30 若级数∑an收敛,an>0,p>1,且limn→无穷 n^p(e^(1/n)-1)an=1,则p的取值范围是 为你推荐: