证明:f(x)是偶函数且f'(0)存在,则f'(0)=0? 我来答 2个回答 #热议# 不吃早饭真的会得胆结石吗? 茹翊神谕者 2023-08-20 · TA获得超过2.5万个赞 知道大有可为答主 回答量:3.6万 采纳率:76% 帮助的人:1607万 我也去答题访问个人页 关注 展开全部 简单分析一下,答案如图所示 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 户如乐9318 2022-10-08 · TA获得超过6657个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:139万 我也去答题访问个人页 关注 展开全部 f(x)是偶函数, ∴f(-h)=f(h), 又f'(0)存在, ∴h→0+时[f(h)-f(0)]/h与[f(-h)-f(0)]/(-h)的极限都存在且等于f'(0), [f(h)-f(0)]/h+[f(-h)-f(0)]/(-h)=0, ∴2f'(0)=0, f'(0)=0.,2, 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: