设A,B为n阶方阵,若AB=A+B,证明:A-E可逆,且AB=BA.这题怎样做啊?

 我来答
华源网络
2022-09-08 · TA获得超过5603个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部
因为AB=A+B;(A-E)(B-E)=E,所以A-E可逆AB=A+B;.AB-A=B.A(B-E)=B,两边乘以A-EA(B-E)(A-E)=B(A-E)然后同时减去A得出:A(B-E)(A-E)-A=B(A-E)-A=BA-A-B化简得出:A[BA-A-B+E-E]=A(BA-A-B)=BA-A-B移项得出:(A-E)(BA-A-B)=...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式