∫cxdx的导数怎么求呀?

 我来答
嘛嘛瑟瑟
2023-01-08 · TA获得超过1万个赞
知道大有可为答主
回答量:4228
采纳率:72%
帮助的人:885万
展开全部
∫cscxdx
=∫1/sinx dx
=∫1/[2sin(x/2)cos(x/2)] dx
=∫1/[sin(x/2)cos(x/2)] d(x/2)
=∫1/ [cos^2(x/2) * tan(x/2) ]d(x/2)
=∫sec^2(x/2)/tan(x/2) d(x/2)
=∫1/tan(x/2) d(tan(x/2))
=ln|tan(x/2)|+C
又 tan(x/2)=sin(x/2)/cos(x/2)=2sin^2(x/2)/sinx=[1-(1-2sin^2(x/2))]/sinx=(1-cosx)/sinx=cscx-cotx
所以 ∫cscxdx=ln|cscx-cotx|+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式